DIY NAS ein Network attached Storage im Eigenbau [Kommentar]

Vorüberlegungen

Dieses Jahr wird wohl als das DIY Jahr in die Geschichte eingehen. So viel Zeit für Projekte (@Corona) hatte ich noch nie.

Bisher habe mich immer von der NAS Thematik abgesehen. Das hatte verschiedene Gründe. Bei mir ist der primäre Einsatzzweck das Backup mehrerer Rechner.

Festplatten sind heute oft deutlich schneller als 1 Gbit Netze (das theoretische Maximum liegt bei einem Gbit Netz bei 125 MB/s, praktisch sind es oft eher 90 MB/s, eine Moderne Festplatte schafft heute ca. 250 MB/s). Somit war die per USB 3.0 Festplatte immer die deutlich flottere Alternative und zudem deutlich günstiger.

Weiterhin benötigt ein NAS ständig Strom, erzeugt wärme und Geräusche. Festplatten können einen gerade im Wohnbereich auf dauer nerven, wenn sie mit kleinen Lüftern kombiniert werden und rund um die Uhr laufen. Beides ist in NAS oft der Fall.

Seit längerer Zeit stehen bereits 10 Gbit Netze zur Verfügung aber die Kosten sind immens, wenn man mehrere Rechner vernetzen will. Ein Switch kostet je nach Portanzahl gerne mal mehrere hundert Euro und braucht aktive Belüftung und oft 30 oder 40 Watt Strom. Zusätzlich erzeugen diese Switches Lärm. Diese Variante war für mich absolut unattraktiv.

Seit einer Weile stehen nun 2,5 Gbit Netze zur Verfügung. Je Rechner kann man für einen USB Adapter ca. 40€ veranschlagen. Seit wenigen Tagen steht auch der erste bezahlbare Switch für ca. 115€ zur Verfügung (QNAP QSW-1105-5T 5 Port).

Da ich mit dem Raspberry Pi bereits experimentiert hatte und bereits feststand, dass ich einen Minirechner für Linux, Spielereien und Backup nutzen möchte, war der Schritt zum Eigenbau-NAS ziemlich klein.

Warum ein NAS?

Ein NAS hat den Vorteil, dass man von x Stellen darauf zugreifen kann. Statt lokal USB Platten anzustöpseln (für den Hauptrechner, für den Zweitrechner, für das Notebook, für den SAT Receiver, usw.) hat man nur noch eine Zentrale Datensammlung die im gesamten Heimnetz verfügbar ist.

Theoretisch benötigt man also weniger Festplatten und lokale Datensilos. Dazu kommt, dass man mit dem Dateisystem freie Hand hat. Während man bei Windows auf NTFS beschränkt ist und beim SAT Receiver ggf. auf Spezialformate (siehe Technisat), hat man in der Linux Welt die freie Auswahl und kann moderne Systeme mit Copy on Write und Komprimierung nutzen.

Weiterhin braucht man nicht überlegen was ist wo und heute ist es in der Regel so, dass die meisten Geräte eh per LAN verkabelt sind.

Was kostet es?

Die Hardware:

  • Odroid H2+ (ca. 140€)
  • RAM 32GB Ripjaws 2400 (ca. 100€, 8-16GB reichen auch, wenn  man nicht virtualisieren will und ZFS ausschließt)
  • NVMe SSD WD SN550 (70€ 0,5TB bis 120€ 1TB)
  • Festplatten je nach Bedarf (in meinem Fall alte WD 4TB und neue Seagate Exos X14 mit 12TB für ca 300€)
  • Gehäuse Koling Satellite (ca. 40€)
  • Netzteil, Kabel, Schalter (40€)
  • 3D Druck Boardhalter und Mini-ITX-Blende (ca. 25€)
  • Noctua Lüfter 120mm 5V – NF-F12 5V (20€)
  • Sharkoon HDD Vibe Fixer (15€)
  • Bereits vorhanden (zwei weitere Rahmen wie Sharkoon, Metallbleche, Schrauben und Befestigungsmaterial)

Abzüglich der Festplatte rund 500€

Dafür bekommt ihr:

  • beliebiges Dateisystem btrfs / ZFS /ext4
  • 32GB für virtuelle Maschinen oder viel Platz für Zwischenpuffern von Daten (der Odoroid ist für Word, Excel, Internet Surfen, Mails als vollwertiger Desktop Ersatz nutzbar). Selbst Windows 10 lässt sich problemlos installieren (das habe ich selbst bisher nicht gemacht aber Videos dazu gesehen).
  • 2×2,5 Gbit Schnittstellen (einschließlich Link Aggregation was einem aber mangels passenden Switches eher wenig nützt)
  • Maximale Flexibilität (Software, 10 Gbit Erweiterung über NVMe Karte oder über NVMe Karte 6 SATA Anschlüsse)
  • Die NVMe SSD könnt ihr auch gegen eine Karte tauschen, mit der weitere SATA Festplatten ansteuern werden können, dann ist eher der direkte Vergleich mit einem fertig NAS gegeben oder alternativ Port Multiplier nutzen um aus den 2 SATA Anschlüssen z.B. 4 zu machen.

Und von der Stange?

Am ehesten vergleichbar ist der QNAP TS-453D-4G. Der bietet 4 Bays (also doppelt so viel wie der Odroid H2+ Anschlüsse hat, 2×2,5 Gbit, 4GB Ram statt 32GB, keine 1TB SSD für das Betriebssystem) ein vorgegebenes Betriebssystem und ausschließlich ext4 als Dateisystem.

Die Kosten liegen bei rund 600€. Wenn man die SSD und den RAM oben raus rechnet gut 300€ mehr als der Selbstbau aber dafür mit Anschlussmöglichkeiten für zwei weitere Laufwerke.

Der Adapter für 4 weitere Laufwerke über den NVMe Anschluss kostet rund 40€ und dann braucht man für das Betriebssystem ggf. einen 64GB eMMC Baustein statt der NVMe SSD oder man nutzt eine SATA SSD. D.h. für 75 – 100€ hat man quasi die gleiche Ausstattung wie der QNAP, liegt also 200€ günstiger mit deutlich mehr Flexibilität.

Wie sieht es aus?

Odroid H2+ von unten

Mein erster 3 Druck Auftrag (ich habe mich für die günstigste Variante entschieden, wie man erkennt). Das ist aber hinreichend stabil. Odroid H2+ von unten mit Boardhalter und WD SN550 1TB NVMe SSD für das Betriebssystem und zwei mal 16GB RAM

Odroid H2+ von oben

Odroid H2+ von oben mit Powertaster und Board als 3D Druck

Odroid H2+ im Gehäuse verbaut

Odroid H2+ in eingebautem Zustand im Mini-ITX Gehäuse. Sagen wir semiprofessionell. 🙂

Seitenansicht Gehäuse Kühlung, Odroid H2+ Festplattenbefestigung

Seitenansicht. Links Odroid H2+ auf 3D Druck Halter befestigt an den Mini-ITX Befestigungsbohrungen. Rechts Sharkook Vibe Fixer, auf dem ich mit den Blechen noch zwei Weitere HDD Halter befestige. Die Starren Füße am Vibe Fixer habe ich später noch durch Gummis getauscht. Am Lüfter befindet sich ein Blech um einen Teil der Luft auf den Odroid H2+ zu lenken. Der Hauptteil geht Richtung HDDs.

Gehäuse von oben ohne Festplatte

Gehäuse von oben ohne Festplatte

Von Oben – die oberste Festplatte von dem potenziellen 3er Stapel

Gehäuse von seitlich oben mit Odroid H2+ und Festplattenhalterung

Fast finaler Ansatz des Aufbaus: Geändert habe ich die Rahmen. Oben nutze ich noch zwei Rahmen ohne die Gummiringe als Befestigung. Die Platten sind unten mit Gummischeeiben verschraubt. Das hat zu viele Vibrationen erzeugt.

Finaler Aufbau mit beiden Festplatten frei hängend und Gummipuffern unten drunter.

Geschlossenes Koling Satellite Gehäuse von oben

Geschlossenes Gehäuse von oben

Geschlossenes Koling Satellite Gehäuse von vorne

Geschlossenes Gehäuse von vorne

Die Temperaturen:

Die Seagate ist Heliumgefüllt und somit effizienter als die alte Western Digital Festplatte. Die Seagate bewegt sich zwischen 35 – 40°C je nach Last. Die WD bei ca. 5°C mehr (Zimmertemperatur ca. 25°C und 800 RPM Lüfterdrehzahl).

Der Odorid H2+ liegt bei ca. 30°C an den drei Boardsensoren im Leerlauf. Die CPU Sensoren bei 45°. Der Lüfter ist dabei angenehm leise. Bei Datenübertragung gehen die Kerne auf 65°C hoch und sind somit noch weit vom kritischen Bereich von 95°C entfernt.

Das kann man von den Festplatten in Kombination mit dem Gehäuse leider nicht sagen. Obwohl die Platten maximal entkoppelt sind, ist das Blech so dünn, dass es durch das Geräusch der Festplatten angeregt wird und dieses eher verstärkt. Das kann einem bei geringer Entfernung gerade bei der alten WD auf den Senkel gehen.

Da ich die Festplatten aber nach 10 Minuten in den Standby schicke ist es nicht so dramatisch.

Der Stromverbrauch:

Im Idle mit Samba, Apache, Nginx, Mysql, Firewall, DHCP, Bind, Webmin, Webadm, Slapd, Openotp, Elasticsearch, Memcached, PHP, Redis, Proftp, TS3 Server, Opendkim, Postfix, Dovecot, Openvpn, SSH-Server.

    • WD, Seagate, Odroid H2+, Ubuntu 20.04, USB Stick, MicroSD Card Reader, 1Gbit USB Netzwerkadapter, NVMe SSD, 4 Port USB 3.0 Hub, Lüfter – 21 Watt
    • WD, Odroid H2+, Ubuntu 20.04, USB Stick, MicroSD Card Reader, 1Gbit USB Netzwerkadapter, NVMe SSD, 4 Port USB 3.0 Hub, Lüfter – 18 Watt
    • Seagate, Odroid H2+, Ubuntu 20.04, USB Stick, MicroSD Card Reader, 1Gbit USB Netzwerkadapter, NVMe SSD, 4 Port USB 3.0 Hub, Lüfter – 12 Watt
    • Odroid H2+, Ubuntu 20.04, USB Stick, SD Card Reader, 1Gbit USB Netzwerkadapter, NVMe SSD, 4 Port USB 3.0 Hub, Lüfter – 9 Watt
    • Odroid H2+, Lüfter, NVMe SSD, Ubuntu 20.04 ca. 6-7 Watt
    • 4 Port USB 3.0 Hub, USB Stick, MicroSD Card Reader ca. 1 Watt
    • 1 GBit Adapter ca. 1 Watt
    • WD ca. 9 Watt (Idle) – lt. Datenblatt 8,1 Watt
    • Seagate ca. 3 Watt (Idle) – lt. Datenblatt 5 Watt (nach 2 Minuten ca. 3 Watt mit Idle_B, das habe ich gemessen)

An dem Beispiel sieht man wie viel Strom alte Festplatten benötigen. Die Seagate hat interne Sparmechanismen, die gegriffen haben.

Die Performanz:

  • Lokale SSD auf NVMe SSD mit Windows Explorer (Luks, Btrfs, ZSD1 Komprimierung) in der Spitze ca. 220MB/s, Einbrüche auf 70 MB/s, im Durchschnitt ca 175 MB/s (das Limit ist in dem Fall dank schlechter Parallelisierung der Prozessor)
  • NVMe SSD (Luks, Btrfs, ZSD1 Komprimierung) auf lokale SSD mit Windows Explorer in der Spitze bis 290 MB/s, im Schnitt ca. 200 MB/s (wo das Limit in dem Fall liegt ist mir nicht klar, der Prozessor ist nicht ausgelastet, in der Vergangenheit habe ich aber bereits beobachtet, dass der Windows Explorer limitiert)
  • Die iperf3 Messungen waren für mich überhaupt nicht nachvollziehbar. Der i225V schafft in Senderichtung zum Odroid ca. 2,4 Gbit, die Realtek Chips kämpfen mit bescheidenen Treibern. Je nach Version (habe ich 2,15 Gbit) geschafft und das waren nicht die aktuellen Treiber von Realtek, sondern die automatisch von Windows installierten Treiber. In der Gegenrichtung Odroid nach PC liegt das von mir erreichte Maximum bei ca. 1,5 Gbit (unabhängig davon ob Realtek oder Intel). Sehr dubios.

Anmerkung: Ich rate davon ab über den QNAP QSW-1105-5T 5 Port sowohl Internet als auch den NAS Verkehr laufen zu lassen. Wenn man die Leitung zum NAS auslastet sind die Latzenzen enorm. Stattdessen sollte man dafür einen separaten Adapter nutzen (1 Gbit per USB reicht vollkommen).

Ich habe übrigens auch BTRFS ohne Komprimierung getestet. NTFS war extrem lahm (liegt vermutlich am Linux Treiber), FAT32 und ext4 waren auch nicht schneller als BTRFS mit Komprimierung.

Der praktische Nutzen:

Der Nutzen muss sich final noch erweisen. Unter Linux ist er definitiv gegeben weil man dort immer ohne Probleme auf das NAS zugreifen kann. Bei True Image wird das NAS nicht automatisch gefunden. Bevor man im Notfall lange rumbastelt und das irgendwie Treiber integriert, nimmt man schnell mal wieder die USB Platte und schwups schon war das NAS für die Katz.

Dazu kommt, dass die Qaulität bei Acronis True Image leider von Version zu Version und von Upgrade zu Upgrade sehr stark schwankend ist. Für Rescuemedien müssen Treiber für die jeweiligen Netzwerkchips hinzufügt werden. Selbst die 2020er Version findet weder den Intel 225V (2,5 Gbit), noch den 219V (1 Gbit), noch den Realtek 8156 (2,5 Gbit). Selbst wenn die Netzwerkchips per Treiber gefunden sind, muss man manuelle Schritte durchführen, damit das NAS erkannt wird. Die Performanz ist bei den Rescuemedien generell schlecht und reizt nicht mal ein Gbit LAN aus.

Zusammenfassung:

Abseits von einer manuellen Ubuntu Installation mit allen Einzelkomponenten kann man für den NAS Einsatzzweck auch Fertiglösungen wie z.B. Freenas nutzen, verliert damit aber wieder einen Teil der Flexibilität.

Der Odroid H2+ ist über den NVMe Slot recht flexibel. Es lässt sich auch 5 (USB) oder 10Gbit (NVMe) Ethernet nachrüsten. Dann allerdings nur mit 2 SATA HDDs oder mit Port Multipliern (wobei das wohl nur für 2 HDD pro Port Sinn, wenn parallele Zugriffe erfolgen) macht.

Für mich ist der Odroid H2+ das beste NAS, sofern man maximal 2 HDDs dauerhaft betreiben möchte. Darüber hinaus ist ein professionelles NAS je nach Anwendungsfall ggf. besser geeignet.

Als einzigen Fehler beim Kauf meiner Komponenten würde ich ggf. das Gehäuse einstufen. Allerdings stellt sich die Frage, ob man dann nicht in ganz anderen Preisregionen landet, wenn man ein Gehäuse mit dickerem Blech oder gar Dämmung möchte. Ich habe zumindest nichts bessere entdeckt was kompakt und günstig ist.

Um das wirklich zu beurteilen benötigt muss man das aber in der Realität begutachten und nicht nur anhand von Fotos im Netz. Ich habe im Nachgang noch etwas Dämmaterial eingebracht und die klappernden Staubfilter entfernt, die eh so große Löcher hatten, dass sie quasi wirkungslos sind.

Fazit:

Ob man ein NAS “braucht” ist individuell sehr unterschiedlich. Das selbstbau NAS ist deutlich flexibler als die Lösung von der Stange aber eben auch um einiges aufwendiger.

Ich finde den Odriod absolut klasse, aber nicht unbedingt primär als NAS. Sehr viel mehr als Minicomputer für Windows, Linux oder als Server. Der NAS Part ist für mich eher ein mitgenommenes Abfallprodukt.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Dieses Formular speichert Name, E-Mail und Inhalt, damit ich den Überblick über auf dieser Webseite veröffentlichte Kommentare behalte. Für detaillierte Informationen, wo, wie und warum  deine Daten gespeichert werden, wirf bitte einen Blick in die Datenschutzerklärung. Mit dem der dem folgenden Button nimmst du diese zur Kenntnis und akzeptierst den Inhalt.